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Abstract

This work studies the decentralized consensus optimization problem from the perspective of

understanding the relation between consensus constraints between individual workers, and

the generalization ability of the proposed algorithm. We first conduct an independent study

on the efficiency of compressed Decentralized Stochastic Gradient Algorithms (DSGD) with

overparameterized models, and note the weak dependence on worker consensus with deep

neural networks (DNNs). Inspired by recent work proposing stochastic optimization al-

gorithms for multi-agent systems over Reproducing Kernel Hilbert Spaces (RKHS), we

propose a novel functional-consensus-based decentralized stochastic gradient descent algo-

rithm. Advantages and drawbacks of the functional consensus algorithm is highlighted,

and a secondary inexact-consensus based on computed lottery-tickets is proposed. Finally,

this project turns to the problem of inexact consensus learning on time-varying graphs.

1. Introduction

The rapid increase in the size of real-world datasets make it infeasible to store large training

data on a centralized server. Learning algorithms must thus learn to leverage data dis-

tributed over multiple workers. Learning from distributed data also lends valuable benefits

to data privacy, ownership, and efficiency. There are several subfields that propose learning

algorithms over distributed data
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• Distributed learning: In distributed learning, workers communicate with each other,

and a centralized parameter server to learn a shared model θ∗. This parameter-server

architecture aids to simplicity for analysis. Figure of a typical distributed learning

architecture in shown in 1

• Federated learning [Wang et al., 2021] – Federated learning is a subset of the dis-

tributed learning methodology, that has found practical use due to extensive work

done in combating heterogeneous data, heterogeneous clients [Diao et al., 2020], and

privacy-preserving machine learning.

• Decentralized Learning: In decentralized learning, workers cannot communicate with

all other workers; Instead, they are only allowed to communicate with their immediate

neighbors while arriving to a consensus about each worker’s underlying parameter

distribution θti [Blondel et al., 2005,Nedic and Ozdaglar, 2009].

Parameter Server Workers

Figure 1: (Left) Standard Parameter-Server architecture for distributed learning. In dis-
tributed learning, the server is tasked with aggregating optimization variables from each
worker. Usually, at each iteration, after performing local updates, worker i sends its opti-
mization variable wni to the server, who aggregated

∑
iw

t
i over all workers, and broadcasts

the updated wt+1
i back to each worker. (Right) A Ring-AllReduce algorithm to combat the

expensive communication caused by sending variables to the server. In Ring-AllReduce, each
process first reduces, and then sends the reduced variable to the next worker.
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2. Background

2.1 Decentralized Optimization

This work concerns itself with the final method – decentralized learning. A popular ap-

proach for enabling scalable machine learning is applying decentralized algorithms to tackle

the large-scale optimization problem through collaboration between a group of workers con-

nected on a network/graph.

In decentralized learning, we are interested in the following finite-sum optimization problem

of a d-dimensional variable θ:

min
θ∈Rd

J(θ) :=
1

N

N∑
i=1

Ji(θ). (1)

and Ji : Rd → R is a continuous, differential private objective function of worker i. Further-

more, the N workers are connected on an undirected graph denoted by G = (V,E), where

V = [N ] = {1, ..., N} is the set of workers and E ⊆ V × V is the set of edges of G with self

loops such that (i, i) ∈ E for all i ∈ V . Let G be a connected graph, we note that (1) is

equivalent to the consensus optimization problem:

min
θi∈Rd,i∈V

N∑
i=1

Ji(θi) s.t. θi = θj , ∀ (i, j) ∈ E, (2)

where θi ∈ Rd is a private/local variable held by the ith worker. In this paper, we are

concerned with the application of (1) to machine learning (ML) tasks via training a neural

network (NN) model. Following the design of (1), our goal is to train a common model θ

at all workers. For example, if we consider a supervised learning problem for classification,

the ith private function takes the form of the empirical risk:

Ji(θ) =
1

|Di|

|Di|∑
j=1

loss(f(xj ;θ); yj), (3)
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where xj ∈ Rf and yj ∈ R are the jth feature and label known by worker i, respectively,

and |Di| is the number of samples held by worker i. The loss function loss(·) can be taken

as the cross-entropy, or the quadratic loss. The nonlinear function f(x;θ) is the output of

a neural network, e.g., a two-layer neural network with ReLU activation is given by

f(x;θ) =
1√
m

m∑
j=1

bj max{0, 〈x , θ(j)〉}, (4)

where bj is the jth output weight and we have defined the parameters as θ = (θ(1), ...,θ(m)) ∈

Rmf such that d = mf . Notice that despite its simplicity, the NN architecture (4) exhibits

good representation power provided that m→∞.

2.2 Consensus in Decentralized Learning

An important consideration is to note the heavy dependence of 2 on the consensus constraint

θi = θj ∀ (i, j) ∈ E. In practice, the consensus constraint is reformulated as an average

consensus among N workers’ local vectors θi:

θ̄ =
1

N

N∑
i=1

θi (5)

A standard method to compute this aggregate in a distributed environment is through gossip

algorithms that communicate with their immediate neighbors. For a parameter distribution

θti on node i for iteration t, we can compute θt+1
i by:

θt+1
i = θti − η

n∑
j=1

wijδij ∀j ∈ V, ∀t ≥ 0

Where we compute δij as a difference θti − θtj for gossip with exact communication (vanilla

gossip). In matrix form, we may write gossip averaging for a parameter vector across all
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agents θtN =

[
θt1 θt2 . . . θtN

]
as:

θt+1 = θt + ηθt(W − I)

Where W ∈ RN×N+ is a doubly stochastic mixing matrix W ∈ RN×N+ satisfying the

row/column sum condition W1 = W>1 = 1; it respects the graph topology such that

Wij = Wji = 0 whenever (i, j) /∈ E; moreover, it satisfies the fast mixing condition of a

Markov chain such that

‖W − 11>/N‖ ≤ 1− ρ, (6)

where ρ ∈ (0, 1] is the spectral gap, and β = max{|λ2(W )|, |λn(W )|} be the second-largest

eigenvalue ofW . Notice that such matrix exists for any connected graph G. For a constant

stepsize η ∈ (0, 1], vanilla gossip converges linearly to the averaged iterate θ̄ in linear time.

While previous analysis depended on G being a connected graph, [Boyd et al., 2006] show

that averaging time of the gossip algorithm over a graph of arbitrary (and possibly sparse)

topology depends on β of the mixing matrix W .

2.3 Decentralized Gradient Descent (DGD)

In a distributed multi-agent setting, where workers aim to minimize a local objective func-

tions, algorithms follow a “consensus + optimize” strategy, where local updates are performed

on each worker, and updated parameter vectors are communicated to immediate neighbors

using a gossip update mechanism. Under the assumption that each private function Ji(θ)

is smooth, i.e., the gradient map is Lipschitz continuous, DGD algorithm, which follows the

“consensus + optimize strategy” converges in linear time:

Assumption 1 For any i ∈ [N ], there exists L ≥ 0 such that

‖∇Ji(θ)−∇Ji(θ′)‖ ≤ L‖θ − θ′‖, ∀ θ,θ′ ∈ Rd. (7)
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Figure 2: Decentralized Gradient Descent over a network on N workers. At each node,
worker i computes a local gradient on its local variable θti , and broadcasts it to all neighbors
j ∈ V,wij ≥ 0. Gossip averaging with neighbors’ parameters is done with a gossip step.

Thus, at each iteration k, and agent i, the following consensus and optimize strategy can

take place asynchronously:

θt+1
i =

N∑
j=1

wijθ
t
j − η∇Ji(θti) (8)

Note that 8 can be written as a special case of the standard vanilla gossip. [Lian et al., 2017]

propose a stochastic alternative to 8 with data-point or minibatch ξi on worker i. We are

then interested in determining:

min
θ ∈ Rd

J(θ) :=
1

N

N∑
i=1

Eξi∼DJi(θ; ξ) (9)

Where D = ∪Mi=1Di is the private data distribution available to worker i. In the stochastic

setting, we require a bounded svariance on the stochastic gradient, and unbiased estimate

of the stochastic gradient:
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Assumption 2 There exists σ, τ,G ≥ 0 such that for any i ∈ [N ], t ≥ 0, the stochastic

gradient g(t)
i satisfies

E[g
(t)
i |Ft] = ∇Ji(θ(t)

i ), E[‖g(t)
i ‖

2|Ft] ≤ G2,

E[‖g(t)
i −∇Ji(θ

(t)
i )‖2|Ft] ≤ σ2.

E[‖∇Ji(θ)−∇J(θ)‖2] ≤ τ2

(10)

In DPSGD, each worker communicates O(deg(G)) models per iteration. [Lian et al., 2018]

propose an asynchronous version of 1 where update and communication are done in parallel;

leading to a linear speedup with number of workers N . With assumptions 2, and 1, for

a constant total number of iterations T ≥ 0, minibatch size M ≥ 0, and total number of

workers N , we have:

∑N
i=0 E‖∇J

(
1
N

∑N
i=1 θ

t
i

)
‖2

T
≤ 2(E[J(θ0

i )− [J(θTi ) ·N ])

γTM
+

2γL(σ2 + 6Mτ2)

N
(11)

Furthermore, [Lian et al., 2018] remark that when setting stepsize γ = N

10ML+
√
σ2+6Mτ2

√
TM

,

and as T →∞ we recover a convergence rate of O( 1√
T

).

Algorithm 1 Decentralized Parallel Stochastic Gradient Descent (DPSGD)

Require: SGD step-size η > 0, mixing matrix W , weights {θ0
i }Ni=0, consensus stepsize

γ ∈ (0, 1)
for t = 1, 2, . . . , T do

for worker i = 1, . . . , N do
Sample minibatch from node i: ξk,i ∼ Di and calculate local stochastic gradient

gti = ∇J(θki , ξ
k
i )

Receive parameter variables from neighbors θkj ∀j ∈ V, wij > 0

Compute consensus step: θk+ 1
2

i =
∑

j wijθ
k
j

Update the local variable θk+1
i = θ

k+ 1
2

i − ηgti
end for

end for
Return Averaged model θ̄∗ =

∑
N θ

T
i
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3. Contributions and Related Work

While there has been a large body work in investigating newer decentralized learning algo-

rithms, this study focusses on two constraining requirements:

1. The decentralized learning algorithm must be efficient for overparameterized deep

neural network models (d � 1). Overparameterization is achieved when the number

of parameters is significantly higher than the number of training samples (ResNet (s),

VGG, AlexNet are all overparameterized models). A majority of these schemes propose

a form of communication compression to counteract the increased communication cost

with large NN models.

2. This study is focussed on inexact consensus – where workers are no longer required to

send a parameter vector θti at every iteration to each neighbor j ∈ V ∀wij > 0.

The above constraints significantly sparsify the available literature relevant to the problem

of interest. Therefore, this section will present related work that satisfy one of our above

constraints at a time.

Communication Efficient Deep Learning: The past few years have witnessed a signif-

icant increase in interest surrounding multi-agent stochastic nonconvex optimization meth-

ods, particularly with neural networks. The rise of deep neural networks have inevitably

led to an increased communication bandwidth between workers, expecially for overparam-

eterized models that find themselves in use for practical applications [Brown et al., 2020].

Previous works have developed communication-efficient alternatives to standard DPSGD

algorithms. [Koloskova et al., 2019,Koloskova* et al., 2020] proposed CHOCO-SGD which

compresses incremental vectors at each worker prior to communication. [Tang et al., 2019]

proposed an error-compensation strategy to DPSGD with significant communication cost

reduction without affecting convergence. [Seide et al., 2014] quantize gradients to one-bit per

value, and propose an error compensation algorithm that corrects quantization error from

the previous iteration. Finally, [Alistarh et al., 2018,Shi et al., 2019] attempt to provide an
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analysis of DPSGD using the topk sparsifier.

Inexact Consensus: [Kong et al., 2021] attempt to explain the conensus difference be-

tween individual workers as a key factor influencing generalization gap between centralized

and decentralized training. This work proposes a critical consensus distance - below which,

decentralized training can converge as quickly as its centralized counterpart with a larger

stepsize. [Xiang et al., 2020] propose a privacy preserving private consensus scheme. [Kop-

pel et al., 2019,Koppel et al., 2018] use a penalized variant of functional SGD to enforce a

consensus constraint – a concept used in the proposed algorithm of this study.

Primary Contributions:

1. We highlight a pitfall in existing theory regarding the performance of convergence and

consensus of DSGD algorithms with overparameterized models. We empirically show

the consensus properties of overparameterized models – overparameterized models

enjoy higher consensus. However, NN models with wider hidden layers are slower to

reach consensus (more iterations required) compared to smaller models.

2. We study work on decentralized learning with regressors from RKHS primarily used

for strongly convex problems, and make a preliminary extension in inexact consensus

learning. We propose Inex-SGD, a decentralized learning algorithms for DNN models

that leverage model output as a consensus metric as opposed to the parameter matrix.

3. We simulate a series of numerical experiments with inex-SGD, making comparisons

to CHOCO-SGD and standard decentralized parallel stochastic gradient descent al-

gorithm (DPSGD). We find that inex-SGD, while not converging as efficiently as

CHOCO-SGD with a top-k sparsifier, still converges to a valid solution with no con-

sensus involved, and at a fraction of the communication cost.
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4. Motivated by recent theoretical advances to the Lottery Ticket Hypothesis [Frankle

and Carbin, 2018]: an algorithms to iteratively find sparse subnetworks from their

overparameterized counterparts, we propose an extension to inex-SGD that bases con-

sensus on pruned neural network models. Simulation results indicate that performing

DPSGD on pruned networks can replicate performance and communication cost of

CHOCO-SGD.

5. Finally, the project attempts to pivot into a critical application of inexact consensus

algorithms: decentralized learning on time-varying graphs. We provide a brief litera-

ture review of traditional algorithms built to learn on time-varying graphs, and offer

a forecast on inexact consensus algorithms for time-varying graphs.

4. Decentralized Learning in the Overparameterized Regime

We first conduct an empirical study on CHOCO-SGD (Algorithm 2), highlighting a pit-

fall in existing theories surrounding overparameterization and communication cost for de-

centralized learning. CHOCO-SGD relies on compressing the difference in iterated before

communication. More formally, the communication step depends on a compression operator

Q : Rd → Rd which reduces the amount of information transmitted. Furthermore, we are

compressing the difference between the successive iterates with the local stochastic gradient.

Common communication compression techniques include gradient quantization and gradi-

ent sparsification. Broadly, these communication compression methods can be classified

into biased and unbiased operators. For the CHOCO-SGD algorithm, it is assumed that the

compression operator is a random operator satisfying

EΩ

[
‖Q(θ; Ω)− θ‖2

]
≤ (1− δ)‖θ‖2, ∀ θ ∈ Rd, (12)

where Ω is the implicit random state of the compression operator, and δ ∈ (0, 1] is a pa-

rameter characterizing the expected error resulted from the compression. Intuitively, with
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Algorithm 2 CHOCO-SGD Algorithm [Koloskova et al., 2019]

1: INPUT: initial weights {θ(0)
i }Ni=1, max. no. of iterations T , consensus parameter γ ∈

(0, 1), step sizes {ηt}t≥0.
2: Set the auxilliary variables θ̂(0)

i,j = 0, j ∈ Ni, i ∈ [N ].
3: Draw the stopping iteration number T ∼ U{0, ..., T}.
4: for t = 0, 1, ...,T do
5: for i = 1, ..., N do . //Local SGD step//
6: Compute the local SGD:

θ
(t+ 1

2
)

i = θ
(t)
i − ηtg

(t)
i ,

where g(t)
i is the stochastic estimate of ∇Ji(θ(t)

i ).
7: end for
8: For each worker i = 1, ..., N , broadcast the compressed difference vector Q(θ

(t+ 1
2

)

i −
θ̂

(t)
i,i ) to the neighbors, where Q(·) is a compression operator satisfying (12).

9: for i = 1, ..., N do . //Combination step//
10: Update the auxiliary variable:

θ̂
(t+1)
i,j = θ̂

(t)
i,j +Q(θ

(t+ 1
2

)

j − θ̂(t)
j,j ), ∀ j ∈ Ni.

11: Update the local NN weights:

θ
(t+1)
i = θ

(t+ 1
2

)

i + γ
∑

j∈Ni
Wij{θ̂(t+1)

i,j − θ̂(t+1)
i,i }.

12: end for
13: end for
14: OUTPUT: trained weights {θ(T)

i }Ni=1.

the condition (12), the CHOCO-SGD algorithm behaves similarly as the DSGD algorithm

as only the differences between successive iterates are compressed.

Under Assumptions 1, 2, and 12, We observe the following result that is borrowed from

[Koloskova* et al., 2020, Theorem 4.1] on the CHOCO-SGD algorithm:

Theorem 1 Under Assumptions 1, 2 and suppose that the compressor satisfies (12). There

exists η, γ > 0 such that if we consider a constant step size with ηt ≡ η, then for any T ≥ 1,

the output generated by Algorithm 2 satisfy:

E[‖∇J(θ
(T)

)‖2] = O

(√
Lσ2J0

NT
+

(
LGJ0

ρ2δT

) 2
3

)
,
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where the expectation is taken over T and the stochastic quantities in the algorithm, δ was

defined in (12), ρ ∈ (0, 1] is the spectral gap of W defined in (6), θ(t)
=
∑N

i=1 θ
(t)
i /N is the

network average iterate, and J0 = J(θ
(0)

)−minθ J(θ).

The theorem suggests that the CHOCO-SGD algorithm finds an O(1/
√
T )-stationary solu-

tion to (1) in at most T iterations as we note that T ≤ T .

We concentrate on the performance of CHOCO-SGD when d � 1, for example, when

training an overparameterized NN such as (4) with m� 1 neurons. Furthermore, to control

the bandwidth usage, we choose the randk sparsifier or topk sparsifier as the compressor.

Now, we fix the number of iterations as T , and the number of coordinates sent per iteration

at k, i.e., we fix the amount of data transmitted in the CHOCO-SGD algorithm. In this

setting, we have

E[‖∇J(θ
(T)

)‖2] = O
(√Lσ2J0

NT
+ d

2
3

(LGJ0

ρ2kT

) 2
3
)
. (13)

Furthermore, Theorem 1 shows that to reach an ε-stationary solution (i.e., E[‖∇J(θ
(T)

)‖2] ≤

ε), the number of CHOCO-SGD iterations required grows in the order:

T = Ω

(
LJ0 ·max

{
σ2

Nε2
,
d

k

G

ρ2ε1.5

})
. (14)

As the amount of data transmitted per iteration is constant (i.e., k real numbers), the above

calculation indicates that the CHOCO-SGD algorithm may require a higher communication

complexity as the NN model becomes inncreasingly overparameterized (i.e., when d � 1),

in order to maintain the same performance level, despite the compression being applied

at each iteration. In fact, for any 1 ≤ k ≤ n, it is predicted from (14) that the number

of real numbers transmitted is Ω(max{kσ2/(Nε2), dG/(ρ2ε3/2)}) when the topk or randk

sparsifier is used as the compressor in CHOCO-SGD. We notice that similar dependence on

the problem dimension d is also observed in other compressed DSGD methods, e.g., [Kovalev

et al., 2021,Tang et al., 2018,Alistarh et al., 2017].

12



0 5000 10000 15000 20000
Cumulative Data transmitted (Mb)

1.2

1.4

1.6

1.8

2.0
Tr

ai
ni

ng
 lo

ss
6.31 × 106 params | 2048 units
3.159 × 106 params | 1024 units
1.579 × 106 params | 512 units
0.789 × 106 params | 256 units
0.394 × 106 params | 128 units

0 5000 10000 15000 20000
Cumulative Data transmitted (Mb)

30

35

40

45

50

55

60

Tr
ai

ni
ng

 A
cc

ur
ac

y 
(%

)

6.31 × 106 params | 2048 units
3.159 × 106 params | 1024 units
1.579 × 106 params | 512 units
0.789 × 106 params | 256 units
0.394 × 106 params | 128 units

Figure 3: Training loss with cumulative communication cost in (MB) for large-width NNs
of varying widths constrained with a constant sparsification coordinate k = 100. While
convergence rate of all models is invariant to layer width, overparameterized models (d ≥
2 × 106 parameters) converge to a solution of lower training loss with identical cumulative
data usage.

4.1 Empirical Study

Theorem 13, motivated an empirical study on the performance and consensus of compressed

DSGD algorithms with overparameterized models. For simplicity, we consider a two-layer

NN with ReLU activation described in (4) and adjust the width, m, of the NN. A full

experimental setup can be found in A, and results concerned with impact of dimensionality

on performance of convergence can be found in [Rao and Wai, 2021]. This section focusses

on rather interesting results that show weak dependence of consensus error on the size of

the NN model used. More formally, we define the normalized consensus error as:

Υ =
1

N

N∑
i=1

‖θTi − θ
T ‖2

‖θT ‖2
, (15)

[Kong et al., 2021] propose a bound on the consensus distance – If the following bound is

satisfied,

Υ2
t ≤

(
1

Ln
γσ2 +

1

8L2
‖∇J(θ̄T )‖2

)
we can recover centralized SGD’s convergence rate with a larger stepsize γ ≤ γmax. Inter-

estingly, figure 9 shows that overparameterized models enjoy marginally higher consensus
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compared to their underparameterized counterparts, and figure 5 shows that both overpa-

rameterized and underparameterized NNs converge with the same cumulative data usage.

However, note that Table 1 shows that overparameterized models reach consensus with

significantly larger number of iterations. Thus, it is expensive for overparameterized models

to reach consensus – even if they are in greater consensus compared to underparameterized

models. This motivates our study of inexact consensus methods.

These empirical results conveying the invariance of consensus distance Υ to the conver-

gence rate, especially for overparameterized deep NNs motivate the algorithm proposal with

inexact functional consensus.

5. Inexact Consensus in [Koppel et al., 2018]

To overcome the inefficiency of establishing consensus with entire parameter matrices, [Kop-

pel et al., 2018] propose a function consensus constraint on individual regressor functions.

Consider a class of functions f ∈ H belonging to a hypothesized function class H, and a

strictly convex loss function used to penalize the deviation of regressor f from the output

label y given by l : H × X × Y → R where (x, y) ∈ X × Y are the feature vectors and

scalar label outputs respectively.

JT =argminfi⊂H

(∑
i∈V

(Exi,yi [lifi(x), yi)] +
λ

2
‖fi‖2H

)
(16)

such that fi = fj ∀ (i, j) ∈ E (17)

To solve 16, [Koppel et al., 2018] equip the hypothesized function class H with a kernel

function over the feature vector space κ : X × X → R that satisfies:

〈f, κ(xi, ·)〉H = f(xi) H = span(κ(xi), ·)
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A series of experiments were carried to reproduce results in [Koppel et al., 2018] on decentral-

ized stochastic optimization with regressors from a RKHS. The nonparametric optimization

problem is formulated with an inexact consensus constraint: fi = fj ∀(i, j) ∈ E . The

problem may be formulated as:

min
∑
i∈V

(E(xi,yi) [li(fi(xi, yi)] +
λ

2
‖fi‖2H +

c

2

∑
j∈ni

Exi([fi(xi)− fj(xi)]2)

[Koppel et al., 2018] minimize a stochastic approximation of the above problem: i.i.d

samples (xi,t, yi,t) are revealed to each worker fi to create a new penalty function:

min
∑
i∈V

(li(fi(xi,t), yi,t) +
λ

2
‖fi‖2H +

c

2

∑
j∈nj

(fi(xi,t)− fj(xi,t))2)

where the representer theorem implies that at time t, the regressor f can be expanded as:

fi,t(x) =
t−1∑
n=1

wi,nκ(xi,n, x) = wTi,tκxi,t(x)

Note that κ is assumed to be Positive definite to qualify as an RKHS. A series of exper-

iments were conducted to understand the effect of kernel choice κ(·) on consensus term

c
2

∑
j∈ni

Exi([fi(xi)− fj(xi)]2). Along with the provided Linear and Chi-Squared kernels, a

radial basis kernel and a gaussian kernel were implemented in MATLAB. Secondly, we run

numerical experiments to understand the dependence of consensus on the consensus penalty

term c, and increase the penalty term every 200 iterations. Results of the simulations are

given in figure 1 and figure 2. All experiments were run on a Gaussian Mixture Model

dataset with 5000 training features and label pairs. Similar to [Koppel et al., 2018], the

number of classes were fixed at 5, and the graph topology is a random network of 20 nodes,

with equal rewiring probability of 0.2.
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Algorithm 3 Inexact Consensus Learning on Node i (Inex-SGD)

1: INPUT: initial weights {θ(0)
i }Ni=1, max. no. of iterations T , SGD step sizes

{ηt}t≥0, batch size M
2: Draw the stopping iteration number T ∼ U{0, ..., T}.
3: for t = 0, 1, ...,T do
4: for i = 1, ..., N do . //Sample batch from Local Distribution Di//
5: ξi,k = [ξk,1i , ξk,2i , . . . , ξk,Mi ]

6: Evaluate model on batch
∑M

j=1 J(θ
k
i , ξ

k,j
i )

7: For each worker i = 1, ..., N , send:(
M∑
j=1

J(θki , ξ
k,j
i ), ξi,k

)
to j ∈ Ni

8: Receive: (
M∑
p=1

J(θkj , ξ
k,p
j ), ξj,k

)
∀j in Ni

9: Calculate Stochastic gradient on worker i:

gki = ∇θili(J(ξi,k)) + λθki

+ c
∑
j∈Ni

(
J(ξki ;θ

k
i )− J(ξki ;θkj )

)
∇J(ξi,k,θki )

+ c
∑
j∈Ni

(
J(ξkj ;θ

k
i )− J(ξkj ;θkj )

)
∇J(ξj,k,θki )

(18)

10: Perform SGD Update: θk+1
i = θki − ηkgki

11: end for
12: end for
13: OUTPUT: trained weights {θ(T)

i }Ni=1.

5.1 Inex-SGD

Motivated by the formulation in 16, we extend the functional consensus constraint for a NN

model. The complete logical flow of the proposed algorithm with mini-batch SGD is given

in 3. Consider a dense feedforward NN model on the ith worker fi(xi; θi). We are interested
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in the following optimization problem:

min
fi

N∑
i=1

[E[li(fi(xi, yi))] +
λ

2
‖fi‖2

]
+
c

2

∑
j∈Ni

Exi [|fi(xi)− fj(xi)|2]

 (19)

For the NN model parameterized by θ, we have: (20)

minθi∀i=1,...,N

N∑
i=1

(
Exi [li(f(xi; θi), yi)] +

λ

2
‖θi‖2

)
+
∑
j∈Ni

Exi
[ c

2
|f(xi;θi)− f(xi;θj)|2

]
(21)

We note several benefits to our proposed Inex-SGD algorithm, as proposed in algorithm 3

• Communication involves only sending data-point or minibatch information to immidi-

ate neighbors, instead of large parameter matrices, that grow to occupy a large pro-

portion of the communication cost in the case of overparameterized models. However,

sending local data to immediate neighbors has two main drawbacks:

– Communicating datapoints partially defeats the purpose of privacy-preserving

machine learning, since neighboring nodes are allowed to read incoming data.

Future work will propose to remove personal information/ obfuscate private in-

formation before transmission to neighbors.

– While communication cost is low for transmitting a single data-point, communi-

cation cost grows with increase in mini-batch size, and is thus not scaleable to

large batch sizes

• We eliminate the standard consensus constraint and substitute it with an inexpensive

functional consensus constraint. For standard datasets, f(xi,θi returns either a scalar,

or sparse vector – thus being less expensive.

5.2 Numerical Simulations
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[Results Obtained in Term 2] The inexact consensus algorithm proposed in 3 was imple-

mented in Python3.9, and simulations were carried out on a N = 80 CPU environment,

with an openMPI network environment. For specificity, we detail the technical require-

ments and specifications of the network environment in Appendix ??.

All simulations were performed on an n = 8 worker MPI environment, where workers were

connected over a ring topology. The network graph, in absence of a formal adjacency matrix

due to the inexact consensus nature, was simulated using the Python environment networkX.

We train a series of overparameterized NN models with d = 512 hidden units per layer. Code

snippet 5.2 is an academic version of inex-SGD, where all workers are simulated in one code

run, instead of the simulation version where each worker is run independently n = 8 times

with MPI.

Listing 1: Rough Python3.9 Implementation of Inex-SGD
def inexsgd ( task , world , l earn ing_rate , num_steps , penalty_inex=1e −2):

s t a t e : torch . Tensor = task . i n i t_ s t a t e ( ) # shape [ num_workers , . . . ]

for s tep in range (num_epochs ) :
batch = r e t r i e v e ( data loader )
output = model ( batch ) #Pass batch to l o c a l NN model

for worker in world . workers :
ne ighbors = world . ne ighbors ( worker )
for neighbor in ne ighbors :

worker . broadcast_to ( neighbor , ( output , batch ) )
input , batch_in = worker . recv ( ne ighbor )

grad [ s tep ] = autograd ( l o s s ( output ) ) )
+ penalty_inex ∗ ( ( model_local ( batch )
− model_neighbor ( batch_in ) )∗ autograd ( output )
+ penalty_inex ∗ ( ( model_local ( batch_in )
− model_neighbor ( batch_in ) )∗ autograd ( model ( batch_in ) )

perform_sgd_update ( model_local , e ta=1e=4, grad [ s tep ] )
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Train Dataset % Visible (CIFAR-10)
Ring (d=2,n=12) 24.91
Ring (d=2,n=8) 37.5
Torus (d=4,n=12) 41.89
Torus (d=4,n=8) 62.11

Table 1: For a n = 8 ring topology graph, the average agent has seen 37.5% of all CIFAR-10
images by the 25000 iteration number when trained with inex-SGD.
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CHOCO-SGD with top-99% sparsification

Figure 6: Quality of solution obtained by inex-SGD and CHOCO-SGD after 100 epochs of
decentralized training. CHOCO-SGD is trained with top-1% sparsification, and inex-SGD
is trained on a 512-width NN model. CHOCO-SGD finds higher quality solutions compared
to inex-SGD. Consensus penalty c of inex-SGD fixed at 10−2 and both learning rates were
scheduled to allow for better convergence.

5.3 Result

Figure 6 shows the quality of converged solutions of inex-SGD and CHOCO-SGD. Note that

a top-99% sparsification is chosen for CHOCO-SGD.

Preliminary simulations also observed divergence of inex-SGD for a majority of simulation

trials. Figure 2 shows the “data visibility” percentage of the average worker in an n = 8 ring

topology. For the CIFAR-10 image dataset, the data-visibility is recorded as the percentage
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of the CIFAR-10 dataset that is sent to the average worker. Decentralized learning requires

the data visibility to be minimized. For the ring topology with n = 8 workers, the average

worker is exposed to approximately 37.5% of the CIFAR-10 dataset. This represents another

important drawback of the inexact consensus algorithm proposed. Note that while data-

visibility is high for n = 8 setting, larger topologies recorded significantly lesser visibility.

The data-visibility is also clearly dependent on network topology.

Implementation Boost: Passing minibatch index: An additional improvement was

proposed after a review of previous simulation results. In inex-SGD v2, ξi,k is sent to all

j ∈ Ni only for the first epoch. Each worker records a scalar index of the minibatch recieved

during this first iteration, that is consistent with sender and receiver. The index value is

unique, and is stored permanently for the remainder of training. Following the first epoch,

workers do not re-send their minibatches, and instead send the batch’s index value, that is

received by each neighbor. Thus, communication cost only increases with minibatch size

for the first epoch, and sharply decreases for following iterations of inex-SGD. Preliminary

simulations with inex-SGD v2 on identical network environment, NN models, and datasets

as standard vanilla inex-SGD report an decreased running time, with a near-identical data

visibility score for each agent.

Index Storage Implementation: To improve lookup time, given a minibatch index from

a neighbor, a hash-map like structure was implemented where index (hash values) were cor-

related to a (batchsize× 32× 32× 3) tuple for CIFAR-10 dataset.

Galvanized by the drawbacks of inex-SGD, we now summarize algorithm and theoretical

results of the Lottery Ticket Hypothesis, followed by a new propose inexact consensus algo-

rithm based on identifying sparse subnetworks of overparameterized NN models.
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6. Lottery Ticket Hypothesis

Inspired by all kinds of pruning techniques, [Frankle and Carbin, 2018] proposed the famous

Lottery Ticket Hypothesis which states that a randomly-initialized dense neural network

contains a subnetwork which is able to be trained to match the test accuracy of the original

network under the same initialization of the original network. An analogy to lottery ticket is

mentioned where different subnetwork of the initialized neural network is similar to a lottery

ticket and a larger model have more combination of subnetwork, thus it has a larger chance

of winning the lottery, i.e. converge to the parameters that obtains high test accuracy. More

formally, the lottery ticket hypothesis was proposed in [] as:

Conjecture 1 (Standard Lottery Ticket Hypothesis) Consider a dense feed-forward neural

network f(x; θ) with initial parameters θ = θ0 ∼ Dθ. When optimizing with stochastic

gradient descent (SGD) on a training set, f reaches minimum validation loss l at iteration j

with test accuracy a. In addition, consider training f(x;m�θ) with a mask m ∈ {0, 1}|θ| on

its parameters such that its initialization is m�θ0. When optimizing with SGD on the same

training set (with m fixed), f reaches minimum validation loss l′ at iteration j′ with test

accuracy a′. The lottery ticket hypothesis predicts that ∃m for which j′ ≤ j (commensurate

training time), a′ ≥ a (commensurate accuracy), and ‖m‖0 � |θ| (fewer parameters).

In [Frankle and Carbin, 2018] the author also proposed an iterative pruning method such

that it can identify the winning ticket (i.e. the best subnetwork) after n iterations. Note

that an important artefact of the standard Lottery Ticket Hypothesis is the requirement

of training the sparse subnetwork. The algorithm is detailed, as present in [Frankle and

Carbin, 2018] below:

1. . Randomly initialize a neural network f (x; θ0) (where θ0 ∼ Dθ ).

2. Train the network for j iterations, arriving at parameters θj .
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3. Prune p% of the parameters in θj , creating a mask m.

4. Reset the remaining parameters to their values in θ0, creating the winning ticket

f (x;m� θ0).

Winning Tickets obtained through the above algorithms matched the accuracy of the original

network at smaller sizes than does one-shot pruning.

6.1 Lottery Tickets in Random Networks

While the lottery ticket hypothesis applies appropriately to smaller NN models, the stan-

dard LTH conjecture is weak when considering large, overparameterized models. According

to [Ramanujan et al., 2020] such large networks contain randomly initialized subnetworks

(untrained) that can approximate a target network’s performance. Note that the target

network is trained on a particular dataset, and the sparse subnetwork is untrained with

weights assigned from a uniform distribution. The target network is also smaller when com-

pared to the original overparameterized network. Figure 8 explains the hypothesis presented

in [Ramanujan et al., 2020]. Formally, we write the strong LTH conjecture as follows:

Conjecture 2 (Strong LTH) Within a sufficiently over-parameterized neural network with

random weights (e.g. at initialization), there exists a subnetwork that achieves (without

training) competitive accuracy compared to the full network after training.

The strong LTH conjecture has led to several streams of work that aim to:

1. Quantify the degree of overparameterization required to find a sparse subnetwork that

can reliably approximate a target network with at least a probability 1− δ.

2. Design algorithms that can extract a sparse subnetwork G̃ from the original overpa-

rameterized network G
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We first formalize a definition of the subgraph/ subnetwork.

Conjecture 3 (Definition of a subnetwork [Malach et al., 2020]) Fix a network G(x) =

Wdσ (Wd−1σ (. . .W1x)), where σ(x) = max{x, 0} (ReLU).

A subnetwork of G is any network of the form G̃(x) = W̃dσ
(
W̃d−1σ

(
. . . W̃1x

))
, where

W̃i = Bi �Wi for some Bi ∈ {0, 1}nin ×nout (here � is Hadamard product)

Given the definition of the subnetwork, [Malach et al., 2020] prove that the minimum over-

parameterization required of the original network G is of the order O
(
d4l2

ε2

)
for a target

network F with width l and depth of d layers for an ε− approximate approximation. For-

mally, the theorem is stated below.

Conjecture 4 (Degree of Overparameterization Required for Strong-LTH [Malach et al.,

2020]) Fix some target fully-connected ReLU-network F of width k, depth d and input

dimension n. Fix δ > 0.

Then, a randomly-initialized network G of width poly (d, n, k, 1/ε, log(1/δ)) and depth 2d,

has w.p. ≥ 1− δ a subnetwork G̃ that approximates F up to ε.

This rate of overparameterization was improved in [Pensia et al., 2020]. Below stated is the

informal theorem:

Conjecture 5 [Pensia et al., 2020] A randomly initialized network with width O(d log(dl/min{ε, δ}))

and depth 2l, with probability at least 1−δ, can be pruned to approximate any neural network

with width d and depth l, up to error ε.
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6.2 Determining optimal subnetwork G̃

Notation We use lower-case letters to represent scalars. For all experiments and equations,

we use fully-connected neural networks (FC NNs). Each FC NN has nl nodes (or neurons)

on each layer l. We denote the set Vl = [(v1
l , . . . , v

l
nl

)] to denote all nodes on layer l. Let

Iv be the input to node v and let Zv denote the output of node v. We define wuv to be a

connected edge between node u and node v, where u and v are not in the same layer.

Preliminaries Note that for a FC NN model, for a single unit, we have Zv = ReLU(Iv).

Therefore, the forward propagation can be written as:

Iv =
∑

u∈Vl−1

wuvZu

Potential candidates for determining a sparse subnetwork are important, as an optimal

subnetwork can significantly improve the quality of the solution found by the decentralized

learning algorithm. [Zhou et al., 2019] propose the concept of a supermask – a binary mark

applied to the overparameterized model. Empirical results in [Zhou et al., 2019] indicate a

40-50% top-1 accuracy on the CIFAR-10 dataset after applying a supermask on a randomly

initialized overparameterized network. The reasoning behind the success of the supermask is

the low-magnitude of several weights during the training stage, and the nature of gradient-

based optimization algorithms that incentivize such weights to tend to zero.

Furthermore, [Zhou et al., 2019] provide an algorithm to determine G̃ by determining a

probability p for every weight wuv between node u and node v. This algorithm assumes

a constant p across all iterations, and behaves in a dropout-like mechanism. [Ramanujan

et al., 2020] improvement to the above method serves as the foundation for the simulations

done in section 6.3. In [Ramanujan et al., 2020], the forward and backpropagation scores

are modified as follows:

• Assume desired subnetwork G̃ = (V, E).
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• Assign a scalar score suv to each edge wuv.

• Forward propagate:

Iv =
∑

u∈Vl−1

wuvZuI(suv)

Where I(suv) =


1 suv ∈ topk(l)

0 else

• Calculate ∇stuv = d(loss)
dIv

wuvZu

• Update: st+1
uv = stuv − α∇stuv

Where loss is a smooth loss function. Here, st+1
uv is the updated score of the edge. The

intuition behind making the score suv learnable is to allow a particular edge to appear in

the top-k weights if it consistently aligns with the negative gradient. The proof of the

decrease in loss with the above algorithm is given in appendix B1 of [Ramanujan et al.,

2020].

6.3 Proposed Algorithm and Result

We propose the pruning technique outlined in the previous section to yield the subnetwork

G̃. While the above algorithm is an iterative process that requires access to either the entire,

or a subset of the data, the above method is computationally less expensive to traditional

lottery ticket hypothesis networks.

We propose training overparameterized networks with the traditional D-SGD algorithm after

pruned to a subnetwork. Algorithm 1 contains details of the proposed algorithm. In fig-

ure 1, a comparison of traditional D-SGD, CHOCO-SGD, and the proposed strong-Lottery

ticket-based D-SGD algorithm is performed. From the figure, the proposed algorithm nearly

matches the performance of CHOCO-SGD with lesser communication cost due to the spar-

sity of the underlying network. The proposed method is arguably similar to a top-k com-

pression used by CHOCO-SGD during each communication stage. However, the proposed
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algorithm requires no error correction, and can simply be attached to the D-SGD algorithm

after distributing G̃ to all agents.

Algorithm 4 Strong LTH + DPSGD

Require: SGD step-size η > 0, weights {θ0
i }Ni=0, node-score step-size α > 0, pruning steps

T
for t = 1, 2, . . . , T do

for Each Layer l ∈ L do
Iv =

∑
u∈Vl−1

wuvZuI(suv)
∇stuv = d(loss)

dIv
wuvZu

Update: st+1
uv = stuv − α∇stuv

end for
end for
Output G̃
Send G̃ to all workers
for t = 1, 2, . . . , T do

for worker i = 1, . . . , N do
Sample minibatch from node i: ξk,i ∼ Di and calculate local stochastic gradient

gti = ∇J(G̃ki , ξ
k
i )

Receive parameter variables from neighbors G̃kj ∀j ∈ V, wij > 0

Compute consensus step: G̃k+ 1
2

i =
∑

j wijG̃
k
j

Update the local variable G̃k+1
i = G̃

k+ 1
2

i − ηgti
end for

end for
Return Averaged model ¯̃∗

G =
∑

N G̃
T
i

7. Conclusion

In this final report, we showed the preferable convergence and consensus properties of over-

parameterized models used in compressed DSGD algorithms. To improve on the rate of

convergence, we propose Inex-SGD: a decentralized algorithms where workers reach in con-

sensus from the model output as opposed to the parameter matrices of workers. We summa-

rize the chief result of the Strong-Lottery Ticket Hypothesis, and propose a modification to

existing algorithm proposed in [Ramanujan et al., 2020] for application to the decentralized

setting. With a pruned, randomly initialized NN model, D-SGD empirically shows compa-
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rable performance to CHOCO-SGD without any need for error-correction and training-time

compression.

8. Future Work

• inex-SGD for time-varying graphs
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Appendix A. Experimental Setup

We consider the task of training a classifier with the CIFAR-10 dataset [?] that contains

50K (resp. 10K) training (resp. test) samples. Each sample consists of a 32 × 32 RGB

image which can be represented as a 3072-dimensional vector, and is associated with a label

selected from 10 image classes. To simulate the decentralized training environment, samples

from the 10 image classes are uniformly split among N workers and shuffled at every epoch

– as in [Koloskova* et al., 2020,Goyal et al., 2017]. To establish a challenging generalization

task, we test the trained models on CIFAR-10.1 [Recht et al., 2018].

For the CHOCO-SGD method, we use a minibatch size of ξ = 128 for every iteration. Our

chosen mode of communication compression is topk and randomk with a fixed number of co-

ordinates k allowed to be communicated between workers. We choose a constant consensus

parameter γ = 0.0375 in Algorithm 2 and an SGD stepsize η = 0.1 which is decreased

by a factor of 10 on epochs 100, 150, 200. Our topk and randomk simulations are run on

N = 8 nodes of a ring topology. The decentralized training environment is simulated on an

MPI-based [Graham et al., 2005] network where we assign an independent CPU process to

each worker.
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Figure 4: Inexact consensus error
∑

(i,j) Exi [(fi,t(xi) − fj,t(xi))2] calculated as en expecta-

tion over number of training samples. Radial basis kernel κ(x, x
′
) = exp

(
−‖x−x

′‖2
2σ2

)
and

Gaussian function kernels lead to consensus errors several magnitudes lower than the simpler
linear and chi-squared kernels.
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Figure 5: Inexact consensus error
∑

(i,j) Exi [(fi,t(xi)−fj,t(xi))2] calculated as en expectation

over number of training samples with a radial basis kernel κ(x, x
′
) = exp

(
−‖x−x
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)
with

different values of penalty coefficient increments. Consensus errors converge at the same
rate for different penalty parameters for a given kernel and datapoints.
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Figure 7: [Ramanujan et al., 2020] If a neural network with random weights (center) is
sufficiently overparameterized, it will contain a subnetwork (right) that perform as well as
a trained neural network (left) with the same number of parameters.
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Figure 8: Simulation result with comparison of Algorithm 4 to CHOCO-SGD and D-SGD.
The proposed strong-LTH D-SGD method with high sparsity reaches a similar quality of
solution as CHOCO-SGD with only a marginally higher value of bits/iteration value (indica-
tive of communication cost). The method performs better than standard D-SGD algorithm
in bits/iteration.
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Figure 9: Converged, normalized consensus distance between N = 8 workers for different
NN layer widths. Overparameterized models enjoy significantly greater consensus among
workers with only marginal dependence on sparsification co-ordinate bandwidth for larger
models.

Layer Width
Normalized Consensus Distance [cf. (15)]

Epoch = 200 Epoch = 100 Epoch = 50

2048 5.499× 10−5 9.8206× 10−3 1.3977× 10−2

1024 4.980× 10−5 1.0346× 10−2 1.5307× 10−2

512 5.349× 10−5 1.0026× 10−3 1.3478× 10−2

256 5.694× 10−5 8.7639× 10−3 1.2423× 10−2

128 8.098× 10−5 7.3181× 10−3 9.2698× 10−3

Table 2: Converged consensus distances at intermediate training epoch numbers. Overparam-
eterized models converge to better-consensus solutions at a slower rate compared to low-width NNs
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