

Improving Imaging Spectrometer Methane Plume Detection with Large Eddy Simulations

Arjun Ashok Rao (US 382-B Affiliate) Jet Propulsion Laboratory, California Institute of Technology Intern under Andrew Thorpe (382-B) and Steffen Mauceri (398-J) Summer 2021

Government sponsorship acknowledged. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA.

Background and Motivation

1. Methane second most important anthropogenic greenhouse gas

2. Mitigation requires accurate quantification of stochastic and intermittent point-source emitters (Duren et. al., 2019)

Facility Level Observations from Space: Uncertain

In-situ Measurements: Sparse

Consequence:

- Strength and Distribution of CH4 emissions poorly constrained
 - Ambiguous regional budgets
 - (Frankenberg et. al., 2016, Duren et. al., 2019) show strong emitters dominate regional budgets.
- Solution: Airborne remote measurements with AVIRIS-NG, GAO at 1-5m ground resolution = rapid and repeated assessment of large areas.

AVIRIS-NG & GAO for CH₄ mapping

Duren et. al., 2019: 60% emissions from 10% point-source Emitters

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M., Yadav, V., ... & Miller, C. E. (2019). California's methane superemitters. Nature, 575(7781), 180-184.

Problem Description

Current CNNs:

Low precision;

Poorly generalize to unseen campaigns.

Why?

Lack of high quality training data

Large class imbalance observed during operational Deployment

Plume data availability restricted by field data

Research Question

Can synthetic CH₄ plumes generated with Large Eddy Simulations (LES) improve robustness of CNNs to false-positive plume detections and create cross-campaign generalizable classifiers?

Preliminaries: Defining Plume Morphology

Source: LES (Jongaramrungruang et al., 2019)

Preliminaries: Ideal Plume Morphology

Source: LES (Jongaramrungruang et al., 2019)

Preliminaries: Ideal Plume Morphology

Source: LES (Jongaramrungruang et al., 2019)

Contents

LES Pre-Processing

Experiments

Results

Conclusion and Future Work

Directly Using LES Deteriorates Performance

Constraining Enhancement Differences

Discriminator Network

Formulating Plume Filtering as a 2-Player Adversarial Game

Question: Can a trained Convolutional Neural Network distinguish Synthetic (LES) from Real-world (CalCH₄, COVID) Plumes?

Discriminator Test Dataset: Scaled LES Plumes

Discriminator Network

Formulating Plume Filtering as a 2-Player Adversarial Game

Note: Lower Precision → Scaled LES Plumes challenging to distinguish

Result: We now have a curated subset of high-quality LES plumes that closely resemble plumes from CalCH4 and COVID

Formulating Plume Filtering as a 2-Player Adversarial Game

Ranking LES Plumes by a 'realism' Metric

Result: We now have a curated subset of high-quality LES plumes that closely resemble plumes from CalCH4 and COVID

Model and Training

Datasets:

(545 LES) + 179 COVID + 479 CalCH₄

+ ~7000 BG Tiles randomly sampled from COVID, CalCH₄

179 COVID + 479 CalCH₄

+ ~4000 BG Tiles randomly sampled from COVID, CalCH₄

Model: LES-CNN For 50 epochs @ LR = 10^{-2} , Decay by $\times 10$ on epochs 35, 45

Optimizer: SGD with Sharpness Aware Minimizer/ Stochastic Weight Perturbation (Foret et al., 2021)

Standard Plume Classification Loss

$$L_{plume} = \min_{\theta} \sum_{i=1}^{n} loss(x_i, label_i, \theta)$$

Sharpness-Aware Loss

$$min_{\theta}[max_{||\epsilon|| \le \rho} L_{plume}(\theta + \epsilon)] + \lambda ||\theta||^{2}$$

Results

Single-Campaign Tests

Train Dataset	Test dataset	Precision	Recall	F1
$LES + COVID + CalCH_4$	COVIDv8 Test	0.80	0.85	0.82
$\operatorname{COVID} + \operatorname{Cal}CH_4$	COVIDv8 Test	0.80	0.71	0.76
$\begin{array}{l} \mathrm{LES+} \mathrm{COVID} + \mathrm{Cal}CH_4 \\ \mathrm{COVID} + \mathrm{Cal}CH_4 \end{array}$	$CalCH_4 v8, Test CalCH_4 v8, Test$	0.75 0.60	$\begin{array}{c} 0.82 \\ 0.83 \end{array}$	$\begin{array}{c} 0.78 \\ 0.69 \end{array}$

LES shows performance improvements, BUT

Plume:Background ratio of:

COVIDv8 Test = **1:26** CalCH₄v8 Test = **1:17**

Distant from Observed flight line ratios!

High Plume:Background Ratio → Unrealistic Result

Tile Sampling (Top)

Collect Representative sample of pos / background tiles. Prevents class imbalancedtraining

Sliding Window (Bottom)

Large number of Background tiles sampled

Operational Method!

An Example:

ang20180927t184652 (CalCH₄, 2018)

23 BG Tiles, 1 Plume Tile with Current Sampling Methodology

~3600 Tiles Sampled with 20-pixel-strided sliding window of size (256×256) .

Results

Multi-Campaign, Imbalanced Test

Imbal

20 COVIDv8 Test Plumes

- + 20 CalCH₄v8 Test Plumes
- + 20 Permian et al. Test Plumes

+ 12,986 background tiles from COVIDv8, CalCH₄,Permian et al.

LES plumes show precision and recall improvement with large class imbalance, outperform real-world plume datasets.

Fetch-IME Plot to Identify Weak False Negatives

LES-aided CNNs capture Fetch > 40m Plumes

< 40m Fetch, < 0.5 kg IME Undetectable

Fetch10 (m)

Without LES

Improving Imaging Spectrometer Methane Plume Detection with Large Eddy Simulations

Source Attribution for CalCH₄ 2018 Without LES Wit

With LES

Incorrect Plume Detections By CNN Confidence

Without LES

With LES

CMF Tile BG Enhancement BG Enhancement = 99.5th percentile CMF value

Summary

LES plumes are transformed and filtered to closely resemble CaICH₄ (2018) and COVID (2020) plumes

LES Plumes significantly improve precision and recall with additional improvements on multi-campaign, imbalanced datasets with high background oversampling

However, most CNNs fail to distinguish < 40m Fetch, < 0.5 kg IME plumes and classify them as background with nearcertainty.

Next Steps

Analysis stage noted several FPs distant from any surface infrastructure/ sub-facility.

Connecting plume classification to Carbon Mapper sub-facility detection (Lawrence, 2021).

Downsample LES Plumes for 30m Plume Detection (Jake Lee, Steffen Mauceri)

LES Work @ AGU Fall Meeting '21

Ashok, A., Mauceri, S., Thorpe, A., et al, (submitted), "Improving Imaging Spectrometer Methane Plume Detection with Large Eddy Simulations", *AGU Fall Meeting 2021*

GC003. Addressing Global and Regional Sustainability Challenges with Satellite Data and Machine Learning

Lee, J., Mauceri, S., Dey, S., **Ashok, A.**, et al, (submitted), "Methane Plume Detection with Future Orbital Imaging Spectrometers", *AGU Fall Meeting 2021*

GC012. Advancing Global Imaging Spectroscopy and Thermal Infrared Measurements

Thank You!

- Andrew Thorpe, Steffen Mauceri
- Jake Lee, Brian Bue, Michael Garay, Siraput Jongaramrungruang
- MLIA and 2021 SURF@JPL Interns
- MLIA and Imaging Spectroscopy Group
- Carbon Mapper Team!
- analysis and paralysis, EMIT clusters

Jet Propulsion Laboratory

California Institute of Technology